
A short note on Graph Convolutional Networks

Kunal Sharma

Abstract

I felt motivated to write this after reading the wonderful paper by
Bruna et al [1] extending CNN to graphs. There are a few ways to build
Graph Neural Networks (GNN) and Graph Convolution Networks (GCN)
are one type of such networks. However, even in GCN there are spectral
and non-spectral apporaches. In this this note though we will focus on
the spectral approach and elucidate on the definition of convolution over
graph given in [Br].

Motivation & Background

GCN is part of the larger program of ‘Geometric deep learning’ where the aim
is to extend Deep learning to non-Euclidean domains. Recall that CNNs have
been successful primarily for image data and 1-D sequences, both of which are
Euclidean spaces, R2 and R respectively. The next logical step is to extend
it to more general spaces like graphs and manifolds. Graphs are much more
tractable than manifolds and as real world data is both discrete and well rep-
resented in graphs in many cases. So extentding CNNs to graphs is the next
logical step. This allows appropriate frameworks to study Knowledge graphs,
social networks etc. Some of the typical tasks include node classification, link
prediction, embeddings and graph representations.

Recall that the distinguishing features of CNN that make them so effective
include locality, translation invariance, and subsampling. In order to extend
CNN to graph its imperative to find analogues of this in case of graph. The
below section focuses on the spectral approach whereas the spatial approach
based on agglomerative clustering is not so well defined and robust.

Convolution on graphs

Let f , g be two functions defined on Z. Then in this discrete case convolution
is given as

f ∗ g(t) :=

∞∑
−∞

f(x)g(t− x),∀t ∈ Z

Here the sequences are infinite but in practice the functions f, g are compactly
supported so the sum is well-defined. This raises the following:

How to extend the above to graphs?

As an analyst, one of the first things that comes to my mind is

1

Theorem. (Plancherel identity) Let f, g ∈ S(Rn) then

F(f ∗ g) = F(f)F(g)

Here S is the Schwartz space consisting of functions that are ‘rapidly de-
creasing’ and F stands for Fourier transform.

So, as a consequence of the above identity, if f and g are such that F(f)
and F(g) exists then we can define convolution as

f ∗ g(x) := F−1(F(f(x))F(g(x)))

In case of graphs, the Fourier transform of f, g has a nice representation using
spectral theory via projection on eigenvectors of Laplacian matrix.

Let G = (V,E) be a graph with V and E being the vertices and edges and let
|V | = N . Functions on G will be defined as f : V → R or equivalently as a tuple
or vector f = (f1, f2, ..., fN) ∈ RN where fi is the value of f at the ithe vertex.
The task of GCN then is to learn such vectors or more generally functions of
them. Recall that Fourier transform decomposes a function into eigenfunctions
of translations, in particular the ‘plane waves’. Interestingly, they are also the
eigenfunctions of the Laplacian,

4e2πiξt = −4π2|ξ|2e2πiξt

It is this relationship that would be exploited below in the setting of spectral
graph theory!

Let W be the weight adjacency matrix, then 4, the ‘combinatorial graph
Laplacian’, acting on a function f is defined as a difference operator,

4f(x) =
∑
f∈Nx

Wx,y|f(x)− f(y)|

where Nx is the neighborhood of x i.e. the set of vertices y connected to x by an
edge. If L is the matrix representation of 4 then L is a real symmetric matirx
and so it has a complete set of orthonormal eigenvectors say, U = {ui}i=0,...,N−1.
with corresponding eigenvalues {λi}i=0,...,N−1. Then the graph Fourier trans-
form is given as

F(f(λk)) := 〈f, uk〉 =

N∑
i=1

f(i)u∗k(i)

where we replaced the complex exponentials with the graph Laplacian’s eigen-
vectors. The inverse Fourier transform can be defined analogously.

Localaization of spectral filters

Now that graph Fourier transform is defined, a definition of convolution can
be presented that respects localization in the spirit of CNN. Borrowing signal-
processing terminology from [1] and [3], let’s think of our functions x as a signal
on G and by abuse of notation let L be the normalization of L now (see [2]).
Then define the convolution of x be the operation of applying a filter gθ to x as

gθ ? x := UgθU
Tx,

2

where UT is the Fourier transform of x. Typically, gθ is some non-linear function
and conventional choice is gθ = diag(θ) where θ ∈ RN is a vector of Fourier
coefficients.

The diagonal filter however is non-local and being dependent on N , the
computational complexity is O(n). A solutiion to this is to consider polynomial
filter that is ‘K-localized’ i.e.

gθ(Λ) =

K−1∑
i=0

θiΛ
i,

To see why this is localized, it’s required to recall a result from Graph theory.
If v1, v2 ∈ V let dG(v1, v2) denote the shortest path distance between v1 and v2
which is the min. number of edges connecting the two vertices. Then we have
this interesting result,

Lemma. Let L be the graph Laplacian matrix and s an integer. Then ∀s >
0, (Ls)i,j = number of paths of length s connecting i and j.

As a consequence, if dG(v1, v2) > s then (Ls)i,j = 0. Therefore, gθ as
defined, a Kth degree polynomial in the Laplacian, depends only in the Kth-
order neighborhood(set of nodes that are maximum ‘K-hops’ away) from the
node where the filter is centered.

References

[1] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral
networks and locally connected networks on graphs. In International Confer-
ence on Learning Representations (ICLR), 2014.

[2] Chung, Fan. Spectral Graph Theory. American Mathematical Society (1997)
[1992].

[3] Michael Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In Ad-
vances in neural information processing systems (NIPS), 2016.

3

